Algebra (Algebra I Course of Study)			
18. Solve quadratic equations in one variable. [A-REI4] b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square and the quadratic formula, and factoring as appropriate to the initial form of the equation. [A-REI4b] (Alabama)			
Geometry			
21. Explain a proof of the Pythagorean Theorem and its converse. [8-G6]			
23. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. [8-G8]			
22. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. [8-G7]			
Number and Quantity (Algebra I Course of Study)			
2. Rewrite expressions involving radicals and rational exponents using the properties of exponents. [N-RN2]			
1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. [N-RN1]			

30. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [F-IF6]			

31. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [F-IF7]
a.

Functions (Algebra I Course of Study)			
29. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [F-IF5]			
Example: If the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.			

34. Write a function that describes a relationship between two quantities.* [F-BF1]
a. Determine an explicit expression, a recursive process, or steps for
calculation from4.0b62e3.0(ul)-
100 (p)-250.0(b)r.0(x)-10(p)-250.0(.)-250.0([)-7.0(F)5.9(-)2.9(B)6.9(F)5.0(x)-10.0(a)49(1])]TJ
ET

Algebra (Algebra I Course of Study)			
21. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. [A-REI7] Example: Find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2}=3$.			
Functions (Algebra I Course of Study)			
33. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). [F-IF9]			
Example: Given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.			

